Role of Sema4C in TGF-β1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells

نویسندگان

  • Rui Zeng
  • Min Han
  • Yun Luo
  • Caixia Li
  • Guangchang Pei
  • Wenhui Liao
  • Shoujun Bai
  • Shuwang Ge
  • XiaoCheng Liu
  • Gang Xu
چکیده

BACKGROUND The p38 mitogen-activated protein kinase (p38 MAPK) is an important intracellular signal transduction pathway involved in TGF-β1-induced epithelial-mesenchymal transition (EMT). Sema4C, a member of the semaphorin family, was found to be essential for the activation of p38 MAPK. However, the role of Sema4C in promoting TGF-β1-induced EMT is unclear. METHODS Renal fibrosis was induced by 5/6 subtotal nephrectomy rat model. In vitro, Sema4C was induced in human proximal tubular epithelial cells (HKC) by treatment with TGF-β1, or was inhibited by siRNA or was over-expressed by Sema4C transfection. The selective p38 MAPK inhibitor, SB203580, was administered to inhibit the p38 pathway. The expression of Sema4C, the markers of EMT, p38 phosphorylation and fibronectin secretion were measured by western blotting, immunohistochemistry, immunocytochemistry or enzyme-linked immunosorbent assay. RESULTS The expression of Sema4C increased in HKC cells that were treated with TGF-β1. Knockdown of Sema4C potently inhibited phosphorylation of p38 MAPK and reversed TGF-β1-induced EMT. Over-expression of Sema4C via Sema4C transfection elicited p38 MAPK phosphorylation and promoted EMT. The effects of Sema4C during EMT were blocked by a p38-specific inhibitor. In vivo, the expression of Sema4C increased in the tubular epithelia of 5/6-nephrectomized rats and human fibrotic renal tissue, and similar localization of phosphorylated p38 and Sema4C was demonstrated by immunohistochemistry on serial sections. CONCLUSIONS Our findings suggest that Sema4C plays an important role in TGF-β1-induced EMT through activation of p38 MAPK in proximal tubular epithelial cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells.

Epithelial-mesenchymal transition (EMT) plays an important role in renal tubulointerstitial fibrosis and TGF-beta1 is the key inducer of EMT. Phosphorylation of Smad proteins and/or mitogen-activated protein kinases (MAPK) is required for TGF-beta1-induced EMT. Because reactive oxygen species (ROS) are involved in TGF-beta1 signaling and are upstream signaling molecules to MAPK, this study exam...

متن کامل

AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells

Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tu...

متن کامل

Paricalcitol Attenuates 4-Hydroxy-2-Hexenal-Induced Inflammation and Epithelial-Mesenchymal Transition in Human Renal Proximal Tubular Epithelial Cells

4-Hydroxy-2-hexenal (HHE), the aldehyde product of lipid peroxidation, may be responsible for the pathogenesis of progressive renal disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to be renoprotective through its anti-inflammatory and antifibrotic effects in various experimental nephropathy models. In this study, we investigated the effects of paricalcitol on inflamm...

متن کامل

Human Cytomegalovirus Induces TGF-β1 Activation in Renal Tubular Epithelial Cells after Epithelial-to-Mesenchymal Transition

Human cytomegalovirus (HCMV) infection is associated epidemiologically with poor outcome of renal allografts due to mechanisms which remain largely undefined. Transforming growth factor-β1 (TGF-β1), a potent fibrogenic cytokine, is more abundant in rejecting renal allografts that are infected with either HCMV or rat CMV as compared to uninfected, rejecting grafts. TGF-β1 induces renal fibrosis ...

متن کامل

Angiotensin II Contributes to Renal Fibrosis Independently of Notch Pathway Activation

Recent studies have described that the Notch signaling pathway is activated in a wide range of renal diseases. Angiotensin II (AngII) plays a key role in the progression of kidney diseases. AngII contributes to renal fibrosis by upregulation of profibrotic factors, induction of epithelial mesenchymal transition and accumulation of extracellular matrix proteins. In cultured human tubular epithel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2011